Cambridge Assessment International Education

Cambridge Ordinary Level

MATHEMATICS (SYLLABUS D)
4024/21
Paper 2
October/November 2019
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
2(b)(iv)	0.1222 final answer	$\mathbf{3}$	M2 for $2 \times \frac{13}{200} \times \frac{187}{199}$ oe or M1 for $\frac{k}{200} \times \frac{200-k}{199}[\times 2]$ oe where $0<k<200$ If 0 scored, $\mathbf{S C 1}$ for $2 \times \frac{13 \times 187}{200^{2}}$ oe
3(a)	Centre (7, 1), scale factor 2	$\mathbf{2}$	B1 for each

Question	Answer	Marks	Partial Marks
5(c)	$x=16$	4	M1 for $2 x(x-1)+6(x+4)=2(x+4)(x-1)$ M1FT for $2 x^{2}-2 x+6 x+24=2 x^{2}+8 x-2 x-8$ M1FT for $24+8=6 x-4 x$ (may be $8 x-6 x$)
6(a)	2435	1	
6(b)	$n(n+2)$ oe	2	B1 for quadratic expression in n
6(c)(i)	35	3	B2 for 35×37 or 35.8 to 35.9 OR M1 for their $n(n+2)=1358$ M1 for solution of their quadratic $\frac{-2 \pm \sqrt{2^{2}-4 \times 1 \times(-1358)}}{2 \times 1}$
6(c)(ii)	7	2	M1FT for $1358-$ their $\mathbf{(c)} \mathbf{(i)} \times($ their $(\mathbf{c})(\mathbf{i})+2)$
7(a)	$\angle P X Q=\angle S X R$, vertically opposite $\angle Q P X=\angle R S X$, angles in same segment $\angle P Q X=\angle S R X$, angles in same segment Hence similar	3	B1 for two correct pairs of angles identified B1 for correct reasons for two pairs of angles
7(b)(i)	3.5	2	M1 for $\frac{R X}{6.3}=\frac{4.5}{8.1}$ oe
7(b)(ii)	7:5nfww	2	B1 for 6.3:4.5 oe nfww
8(a)	$x-4$	1	
8(b)	$\begin{aligned} & C B=\text { area } \div \text { length }=\frac{80}{x} \\ & \text { and } C Q=C B-4 \mathrm{oe} \end{aligned}$	1	
8(c)	$[y=] 80-\frac{1}{2}(x-4)\left(\frac{80}{x}-4\right)$	M1	FT their expression from (a)
	$80-\frac{320}{x}-4 x+16$	M1	FT their expression from (a) of the form $a x+b$
	Correct working leading to $y=32+2 x+\frac{160}{x} \quad \mathbf{A G}$	A1	
8(d)	74	1	
8(e)	Correct smooth curve	3	B2FT for 8 or 9 points correctly plotted or B1FT for 6 or 7 points correctly plotted
8(f)	67.4 up to but not including 68	1	

Question	Answer	Marks	Partial Marks
9(a)	$\cos B \hat{A} C=\frac{950^{2}+520^{2}-680^{2}}{2 \times 950 \times 520}$	M2	or M1 for $680^{2}=950^{2}+520^{2}-2 \times 950 \times 520 \times \cos B \hat{A} C$ oe
	$B \hat{A} C=44.01$ to $44.02\left[=44.0^{\circ}\right]$	A1	
9(b)	349	1	
9(c)	4 min 53 s	4	M2 for [distance $=] 520 \cos 44$ or M1 for $\cos 44=\frac{d}{520}$ oe AND M1 for their distance $\div 4.6$
9(d)	14.8° or 14.78 to 14.79	4	M2 for $h=950 \tan 10.7$ oe or M1 for $\tan 10.7=\frac{h}{950}$ oe AND M1 for $\tan []=\frac{\text { their } h}{680}$ oe
10(a)	10.6[3...]	2	M1 for $\sqrt{(3--4)^{2}+(5--3)^{2}}$ oe
10(b)	$\text { Gradient }=-\frac{1}{3} \text { oe }$	M1	
	Substitutes pair of values into $y=$ their $\left(-\frac{1}{3}\right) x+c$ to find c	M1	
	$y=-\frac{1}{3} x+\frac{1}{3} \text { oe }$ rearranged to $3 y+x=1 \quad \mathbf{A G}$	A1	
10(c)	$[y=] 3 x+9$	3	B1 for gradient $=3$ soi M1 for substituting $(-4,-3)$ into $y=$ their $3 x+c$

